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INTRODUCTION

A (crisp) setA in a universeX can be defined in
the form of its characteristic functionµA : X → {0, 1}
yielding the value 1 for elements belonging to the setA

and the value 0 for elements excluded from the setA.
The most of the generalization of the crisp set have been
introduced on the unit interval[0, 1] and they are con-
sistent with the asymmetry observation. In other words,
the generalization of the crisp set to fuzzy sets relied on
spreading positive information that fit the crisp point{1}
into the interval[0, 1]. Because no negative meaning of
information is suggested, we now feel a need to deal with
negative information. To do so, we also feel a need to
supply mathematical tool. To attain such object, Junet
al. [1] have introduced a new function which is called
negative-valued function (briefly,N -function) to deal
with negative information that fit the crisp point{−1}
into the interval[−1, 0], and constructedN -structures. It
is important to be able to deal with negative information.
It is noted that positive information represents what is
granted to be possible, while negative information repre-
sents what is considered to be impossible. As an exam-
ple, let us consider the spatial relations. Human beings
consider “left" and “right" as opposite directions. But
this does not mean that one of them is the negation of the
other. The semantics of “opposite" captures a notion of
symmetry rather than a strict complementation. In partic-
ular, there may be positions which are considered neither

to the right nor to the left of some reference object.
In 1975, Rosenfeld [2] discussed the concept of

fuzzy graphs whose basic idea was introduced by Kauff-
mann [3] in 1973. The fuzzy relations between fuzzy
sets were also considered by Rosenfeld and he developed
the structure of fuzzy graphs obtaining analogs of sev-
eral graph theoretical concepts. Bhattacharya [4] gave
some remarks on fuzzy graphs. Akramet al. introduced
the concepts of bipolar fuzzy graphs and interval-valued
fuzzy line graphs [5-9]. In this paper, we introduce the
notion ofN -graphs, describe methods of their construc-
tion. We prove that the isomorphism betweenN -graphs
is an equivalence relation (resp. partial order relation).
We then introduce the concept ofN -line graphs and dis-
cuss some of their fundamental properties. We have used
standard definitions and terminologies in this paper. For
other notations, terminologies and applications not men-
tioned in the paper, the readers are referred to [10-14].

PRELIMINARIES

Recall that agraph is an ordered pairG∗ = (V,E),

whereV is the set of vertices ofG∗ andE is the set of
edges ofG∗. Two verticesx andy in an undirected graph
G∗ are said to be adjacent inG∗ if {x, y} = xy is an edge
of G∗. A simple graphis an undirected graph that has no
loops and no more than one edge between any two dif-
ferent vertices. Asubgraphof a graphG∗ = (V,E) is
a graphH = (W,F ), whereW ⊆ V andF ⊆ E. The
complementary graphG∗ of a simple graph has the same
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vertices asG∗. Two vertices are adjacent inG∗

if and only if they are not adjacent inG∗. Con-
sider the Cartesian productG∗ = G∗

1 × G∗
2 =

(V,E) of graphsG∗
1 and G∗

2. Then V = V1 × V2

and E = {(x, x2)(x, y2)|x1 ∈ V1, x2y2 ∈ E2}
∪{(x1, z)(y1, z)|z ∈ V2, x1y1 ∈ E1}. Let G∗

1 =

(V1, E1) and G∗
2 = (V2, E2) be two simple graphs.

Then, thecompositionof graph G∗
1 with G∗

2 is de-
noted byG∗

1[G
∗
2] = (V1 × V2, E

0), whereE0 = E ∪
{(x1, x2)(y1, y2)|x1y1 ∈ E1, x2 6= y2} andE is de-
fined in G∗

1 × G∗
2. Note thatG∗

1[G
∗
2] 6= G∗

2[G
∗
1]. The

union of graphsG∗
1 andG∗

2 is defined asG∗
1 ∪ G∗

2 =

(V1 ∪V2, E1 ∪E2). Thejoin of G∗
1 andG∗

2 is the simple
graphG∗

1 +G∗
2 = (V1 ∪ V2, E1 ∪E2 ∪E′), whereE′ is

the set of all edges joining the nodes ofV1 andV2. In this
construction it is assumed thatV1 ∩ V2 6= ∅. An isomor-
phismof the graphsG∗

1 andG∗
2 is a bijection between the

vertex sets ofG∗
1 andG∗

2 such that any two verticesv1
andv2 of G∗

1 are adjacent inG∗
1 if and only if f(v1) and

f(v2) are adjacent inG∗
2. If an isomorphism exists be-

tween two graphs, then the graphs are called isomorphic
and we writeG∗

1 ≃ G∗
2. An automorphismof a graph

is a graph isomorphism with itself, i.e., a mapping from
the vertices of the given graphG∗ back to vertices ofG∗

such that the resulting graphG∗ is isomorphic withG∗.
By an intersection graphof a graphG∗ = (V,E),
we mean, a pairP (S) = (S, T ) where S =
{S1, S2, . . . , Sn} is a family of distinct nonempty sub-
sets ofV and T = {SiSj |Si, Sj ∈ S, Si ∩ Sj 6=
∅, i 6= j}. It is well know that every graph is an in-
tersection graph. By aline graph of a graphG∗ =

(V,E), we mean, a pairL(G∗) = (Z,W ) whereZ =
{{x} ∪ {ux, vx} |x ∈ E, ux, vx ∈ V, x = uxvx} and
W = {SxSy |Sx ∩ Sy 6= ∅, x, y ∈ E, x 6= y}, and
Sx = {x} ∪ {ux, vx}, x ∈ E. It is reported in the lit-
erature that the line graph is an intersection graph. De-
note byF(X, [−1, 0]) the collection of functions from
a nonempty setX to [−1, 0]. We say that an element of
F(X, [−1, 0]) is a negative-valued functionfrom X to
[−1, 0] (briefly, N -functionon X). By anN -structure
we mean an ordered pair(X,µ) of X and anN -function
µ onX. By anN -relationonX we mean anN -function
ν onX ×X satisfying the following inequality:

(∀x, y ∈ X)(ν(x, y) ≥ max{µ(x), µ(y)}), (1)

whereµ ∈ F(X, [−1, 0]). Throughout this paper,G∗

will be a crisp graph, andG aN -graph.

N -STRUCTURES APPLIED TO GRAPHS

Definition 1. An N -graph with an underlying setV is
defined to be a pairG = (µ, ν) whereµ is anN -function

in V andν is anN -function inE ⊆ V × V such that

ν({x, y}) ≥ max(µ(x), µ(y))

for all {x, y} ∈ E. We callµ theN -vertex function ofV,
ν theN -edge function ofE, respectively. Note thatν is
a symmetricN -relation onµ. We use the notationxy for
an element{x, y} ofE. Thus,G = (µ, ν) is anN -graph
ofG∗ = (V,E) if

ν(xy) ≥ max(µ(x), µ(y)) for all xy ∈ E.

Definition 2. Let G = (µ, ν) be anN -graph. The or-
der of anN -graph is defined byO(G) =

∑

x∈V µ(x).
The degree of a vertexx in G is defined bydeg(x) =
∑

xy∈E ν(xy).

Example 3. Consider a graphG∗ = (V,E) such that
V = {x, y, z}, E = {xy, yz, zx}. Let µ be anN -
function ofV and letν be anN -function ofE ⊆ V × V

defined by

x y z
µ -0.7 -0.5 -0.7

xy yz zx
ν -0.3 -0.2 -0.4

y

G

z

x

−0.2

−0.4−0.3

−0.7

−0.7

−0.5

(i) By routine computations, it is easy to see thatG =

(µ, ν) is anN -graph ofG∗.
(ii) Order of anN -graph=O(G)=-1.9.
(iii) Degree of each vertex inG is

deg(x) = −0.7, deg(y) = −0.5, deg(z) = −0.6.

Definition 4. Let µ1 andµ2 beN -functions ofV1 and
V2 and let ν1 and ν2 be N -functions ofE1 and E2,
respectively. The Cartesian product of twoN -graphs
G1 and G2 of the graphsG∗

1 and G∗
2 is denoted by

G1 × G2 = (µ1 × µ2, ν1 × ν2) and is defined as fol-
lows:

• (µ1 × µ2)(x1, x2) = max(µ1(x1), µ2(x2)) for all
(x1, x2) ∈ V ,
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• (ν1 × ν2)((x, x2)(x, y2)) = max(µ1(x), ν2(x2y2))

for all x ∈ V1, for all x2y2 ∈ E2,

• (ν1 × ν2)((x1, z)(y1, z)) = max(ν1(x1y1), µ2(z))

for all z ∈ V2, for all x1y1 ∈ E1.

Definition 5. Let G1 andG2 be twoN - graphs. The
degree of a vertex inG1 ×G2 can be defined as follows:
for any(x1, x2) ∈ V1 × V2,

dG1×G2(x1, x2) =
∑

(x1,x2)(y1,y2)∈E

(ν1 × ν2)(x1, x2)(y1, y2)

=
∑

x1=y1=x,x2y2∈E2

max(µ1(x), ν2(x2y2))

+
∑

x2=y2=z,x1y1∈E1

max(µ2(z), ν1(x1y1)).

Example 6. LetG∗
1 = (V1, E1) andG∗

2 = (V2, E2) be
two graphs, whereV1 = {x1, y1} andV2 = {x2, y2}
are underlying sets. Letµ1 andµ2 beN -functions ofV1

andV2 and letν1 andν2 beN -functions ofE1 andE2,
respectively. We defineµ1 : V1 → [−1, 0], µ2 : V2 →
[−1, 0], ν1 : E1 → [−1, 0] andν2 : E2 → [−1, 0] by

µ1(x1) = −0.2, µ1(y1) = −0.3,

µ2(x2) = −0.35, µ2(y2) = −0.4,

ν1(x1y1) = −0.1, ν2(x2y2) = −0.2.

(i) It is easy to see thatG1 = (µ1, ν1) andG2 = (µ2, ν2)

areN -graphs ofG∗
1 andG∗

2, respectively. Routine com-
putations give

(µ1 × µ2)(x1, x2) = −0.2, (µ1 × µ2)(x1, y2) = −0.2,

(µ1 × µ2)(y1, x2) = −0.3, (µ1 × µ2)(y1, y2) = −0.3,

(ν1 × ν2)((x1, x2)(x1, y2)) = −0.2,

(ν1 × ν2)((x1, x2)(y1, x2)) = −0.1,

(ν1 × ν2)((y1, x2)(y1, y2)) = −0.2,

(ν1 × ν2)((x1, y2)(y1, y2)) = −0.1.

x2

G2

x1

G1

y1 y2

−0.1 −0.2

−0.2 −0.35

−0.3 −0.4

G1 ×G2

(x1, y2)(x1, x2)

(y1, x2) (y1, y2)

−0.2

−0.1 −0.1

−0.2

−0.2 −0.2

−0.3 −0.3

Clearly,G1 ×G2 is anN - graph ofG∗
1 ×G∗

2.
(ii) Routine computations give degree of each vertex in
G1 ×G2 as

dG1×G2(x1, x2) = −0.3, dG1×G2(x1, y2) = −0.3,

dG1×G2(y1, x2) = −0.3, dG1×G2(y1, y2) = −0.3.

Definition 7. Let µ1 andµ2 beN -functions ofV1 and
V2 and letν1 andν2 beN -functions ofE1 andE2, re-
spectively. The composition of twoN -graphsG1 and
G2 of the graphsG∗

1 andG∗
2 is denoted byG1[G2] =

(µ1 ◦ µ2, ν1 ◦ ν2) and is defined as follows:

• (µ1 ◦ µ2)(x1, x2) = max(µ1(x1), µ2(x2)) for all
(x1, x2) ∈ V ,

• (ν1 ◦ ν2)((x, x2)(x, y2)) = max(µ1(x), ν2(x2y2))

for all x ∈ V1, for all x2y2 ∈ E2,

• (ν1 ◦ ν2)((x1, z)(y1, z)) = max(ν1(x1y1), µ2(z))

for all z ∈ V2, for all x1y1 ∈ E1.

• (ν1◦ν2)((x1, x2)(y1, y2))=max(µ2(x2), µ2(y2), ν1(x1y1))
for all z ∈ V2, for all (x1, x2)(y1, y2) ∈ E0 − E.

Note thatµ1 ◦µ2 = µ1×µ2 onV andν1 ◦ ν2 = ν1× ν2
onE.

Definition 8. Let G1 and G2 be twoN -graphs. The
degree of a vertex inG1[G2] can be defined as follows:
for any(x1, x2) ∈ V1 × V2,

dG1[G2](x1, x2) =
∑

(x1,x2)(y1,y2)∈E

(ν1 ◦ ν2)(x1, x2)(y1, y2)

=
∑

x1=y1=x,x2y2∈E2

max(µ1(x), ν2(x2y2))

+
∑

x2=y2=z,x1y1∈E1

max(µ2(z), ν1(x1y1))

+
∑

x2 6=y2,x1y1∈E1

max(µ2(x2), ν1(x1y1)).
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Example 9. LetG∗
1 = (V1, E1) andG∗

2 = (V2, E2) be
two graphs, whereV1 = {x1, y1} andV2 = {x2, y2}
be underlying sets. Letµ1 andµ2 beN -functions ofV1

andV2 and letν1 andν2 beN -functions ofE1 andE2,
respectively. We defineµ1 : V1 → [−1, 0], µ2 : V2 →
[−1, 0], ν1 : E1 → [−1, 0] andν2 : E2 → [−1, 0] by

µ1(x1) = −0.2, µ1(y1) = −0.3,

µ2(x2) = −0.35, µ2(y2) = −0.4,

ν1(x1y1) = −0.35, ν2(x2, y2) = −0.5.

(i) It is easy to see thatG1 = (µ1, ν1) andG2 = (µ2, ν2)

areN -graphs ofG∗
1 andG∗

2, respectively. Routine com-
putations give

(µ1 ◦ µ2)(x1, x2) = −0.2, (µ1 ◦ µ2)(x1, y2) = −0.2,

(µ1 ◦ µ2)(y1, x2) = −0.3, (µ1 ◦ µ2)(y1, y2) = −0.3,

(ν1 ◦ ν2)((x1, x2)(x1, y2)) = −0.2,

(ν1 ◦ ν2)((x1, x2)(y1, x2)) = −0.1,

(ν1 ◦ ν2)((y1, x2)(y1, y2)) = −0.2,

(ν1 ◦ ν2)((x1, y2)(y1, y2)) = −0.1.

(ν1 ◦ ν2)((x1, x2)(y1, y2)) = −0.2,

(ν1 ◦ ν2)((y1, x2)(x1, y2)) = −0.2.

x2

G2

x1

G1

y1 y2

−0.1 −0.2

−0.2 −0.35

−0.3 −0.4

(x1, y2)

G1[G2]

(x1, x2)

(y1, x2) (y1, y2)

−0.2

−0.1 −0.1

−0.2

−

0
.2

−

0.
2

−0.2 −0.2

−0.3 −0.3

Clearly,G1[G2] is anN - graph ofG∗
1[G

∗
2].

(ii) Routine computations give degree of each vertex in
G1[G2] as

dG1[G2](x1, x2) = −0.5, dG1[G2](x1, y2) = −0.5,

dG1[G2](y1, x2) = −0.5, dG1[G2](y1, y2) = −0.5.

Definition 10. Letµ1 andµ2 beN -functions ofV1 and
V2 and letν1 andν2 beN -functions ofE1 andE2, re-
spectively. Then union of twoN -graphsG1 andG2 of
the graphsG∗

1 andG∗
2 is denoted byG1∪G2 = (µ1∪µ2,

ν1 ∪ ν2) and is defined as follows:

(A) (µ1 ∪ µ2)(x) = µ1(x) if x ∈ V1 ∩ V2,
(µ1 ∪ µ2)(x) = µ2(x) if x ∈ V2 ∩ V1,
(µ1 ∪µ2)(x) = max(µ1(x), µ2(x)) if x ∈ V1 ∩ V2.

(B) (ν1 ∪ ν2)(xy) = ν1(xy) if xy ∈ E1 ∩ E2,
(ν1 ∪ ν2)(xy) = ν2(xy) if xy ∈ E2 ∩ E1,
(ν1∪ν2)(xy) = max(ν1(xy), ν2(xy)) if xy ∈ E1∩
E2.

Definition 11. Let G1 andG2 be twoN -graphs. The
degree of a vertex inG1 ∪G2 can be defined as follows:

Case 1: Whenx ∈ V1 or x ∈ V2 but not in both.
If x ∈ V1, thendG1∪G2(x) =

∑

xy∈E1
ν1(xy),

If x ∈ V2, thendG1∪G2(x) =
∑

xy∈E2
ν2(xy).

Case 2: Whenx ∈ V1 ∩ V2 but no edge incident atx lies in
E1 ∩ E2.
dG1∪G2(x) = dG1(x) + dG2(x).

Case 3: Whenx ∈ V1∪V2 and some edges incident atx lies
in E1 ∩ E2.
dG1∪G2(x) = dG1(x) + dG2(x)-

∑

xy∈E1∩E2

max(ν1(xy), ν2(xy).

Example 12. Let G∗
1 = (V1, E1) andG∗

2 = (V2, E2)

be two graphs, whereV1 = {a, b, c, d, e} and V2 =

{a, b, c, d, f} be underlying sets. Letµ1 andµ2 beN -
functions ofV1 andV2 and letν1 andν2 beN -functions
ofE1 andE2, respectively. We defineµ1 : V1 → [−1, 0],
µ2 : V2 → [−1, 0], ν1 : E1 → [−1, 0] andν2 : E2 →
[−1, 0] by

µ1(a) = −0.2, µ1(b) = −0.1,

µ1(c) = −0.3, µ1(d) = −0.3, µ1(e) = −0.4,

µ2(a) = −0.1, µ2(b) = −0.2, µ2(c) = −0.3,

µ2(d) = −0.5, µ2(f) = −0.4,

ν1(ab) = −0.1, ν1(bc) = −0.1, ν1(ce) = −0.2,

4



World Appl. Sci. J., 22 (Special Issue of Applied Math): 1-9,2013

ν1(be) = −0.1, ν1(ad) = −0.1, ν1(de) = −0.2,

ν2(ab) = −0.1, ν2(bc) = −0.1,

ν2(cf) = −0.2, ν2(bd) = −0.2, ν2(bf) = −0.1.

It is easy to see thatG1 = (µ1, ν1) andG2 = (µ2, ν2)

areN -graphs ofG∗
1 andG∗

2, respectively. Routine com-
putations give

(µ1 ∪ µ2)(a) = −0.1, (µ1 ∪ µ2)(b) = −0.1,

(µ1 ∪ µ2)(c) = −0.3, (µ1 ∪ µ2)(d) = −0.3,

(µ1 ∪ µ2)(e) = −0.4, (µ1 ∪ µ2)(f) = −0.4,

(ν1 ∪ ν2)(ab) = −0.1, (ν1 ∪ ν2)(bc) = −0.1,

(ν1 ∪ ν2)(ce) = −0.2, (ν1 ∪ ν2)(be) = −0.1,

(ν1 ∪ ν2)(ad) = −0.1, (ν1 ∪ ν2)(de) = −0.2,

(ν1 ∪ ν2)(bd) = −0.2, (ν1 ∪ ν2)(de) = −0.1.

Clearly,(µ1∪µ2, ν1∪ν2) is anN - graph ofG∗
1∪G

∗
2.

Definition 13. Letµ1 andµ2 beN -functions ofV1 and
V2 and letν1 andν2 beN -functions ofE1 andE2, re-
spectively. Then join of twoN -graphsG1 andG2 of the
graphsG∗

1 andG∗
2 is denoted byG1 + G2 = (µ1 + µ2,

ν1 + ν2) and is defined as follows:

• (µ1 + µ2)(x) = (µ1 ∪ µ2)(x) if x ∈ V1 ∪ V2,

• (ν1 + ν2)(xy) = (ν1 ∪ ν2)(xy) = ν1(xy) if xy ∈
E1 ∪ E2,

• (ν1 + ν2)(xy) = max(µ1(x), µ2(y)) if xy ∈ E′.

Proposition 14. If G1 andG2 are theN -graphs, then
G1×G2 ,G1[G2],G1∪G2 andG1+G2 areN -graphs.

We formulate the following characterizations.

Proposition 15. LetG1 = (µ1, ν1) andG2 = (µ2, ν2)

beN -graphs of the graphsG∗
1 andG∗

2 and letV1∩V2 =

∅. Then unionG1 ∪ G2 = (µ1 ∪ µ2, ν1 ∪ ν2) is
an N -graph ofG∗ if and only if G1 = (µ1, ν1) and
G2 = (µ2, ν2) areN -graphs of the graphsG∗

1 andG∗
2,

respectively.

Proof. Suppose thatG1 ∪ G2 is anN -graph. Letxy ∈
E1. Thenxy /∈ E2 andx, y ∈ V1 − V2. Thus

ν1(xy) = (ν1 ∩ ν2)(xy)

≥ max((µ1 ∩ µ2)(x), (µ1 ∩ µ2)(y))

= max(µ1(x), µ1(y)).

This shows thatG1 = (µ1, ν1) is anN -graph. Sim-
ilarly, we can show thatG2 = (µ2, ν2) is anN -graph.
The converse part is obvious.

As a consequence of above propositions, we obtain

Proposition 16. LetG1 = (µ1, ν1) andG2 = (µ2, ν2)

beN -graphs of the graphsG∗
1 andG∗

2 and letV1∩V2 =

∅ . Then joinG1+G2 = (µ1+µ2, ν1+ν2) is anN -graph
of G∗ if and only ifG1 = (µ1, ν1) andG2 = (µ2, ν2)

areN -graphs of the graphsG∗
1 andG∗

2, respectively.

We now discuss isomorphism ofN -graphs.

Definition 17. LetG1 = (µ1, ν1) andG2 = (µ2, ν2) be
N -graphs. A homomorphismf : G1 → G2 is a mapping
f : V1 → V2 such that

(i) µ1(x1) ≥ µ2(f(x1)),

(ii) ν1(x1y1) ≥ ν2(f(x1)f(y1))

for all x1 ∈ V1, x1y1 ∈ E1. A bijective homomorphism
with the property

(iii) µ1(x1) = µ2(f(x1))

is called a strong isomorphism. A strong isomorphism
preserves the weights of the nodes but not necessarily the
weights of the arcs. A bijective homomorphism preserv-
ing the weights of the arcs but not necessarily the weights
of nodes, i.e., a bijective homomorphismf : G1 → G2

such that

(iv) ν1(x1y1) = ν2(f(x1)f(y1))

for all x1y1 ∈ V1 is called a strong co-isomorphism. A
bijective mappingf : G1 → G2 satisfying(iii) and(iv)
is called an isomorphism.

Proposition 18. An isomorphism betweenN -graphs is
an equivalence relation.

Proof. The reflexivity and symmetry are obvious. To
prove the transitivity, we letf : V1 → V2 and g :
V2 → V3 be the isomorphisms ofG1 ontoG2 andG2

ontoG3, respectively. Theng ◦ f : V1 → V3 is a bijec-
tive map fromV1 to V3, where(g ◦ f)(x1) = g(f(x1))

for all x1 ∈ V1. Since a mapf : V1 → V2 defined by
f(x1) = x2 for x1 ∈ V1 is an isomorphism, so we have

µ1(x1) = µ2(f(x1)) = µ2(x2) for all x1 ∈ V1 · · · (A),

ν1(x1y1) = ν2(f(x1)f(y1))

= ν2(x2y2) for all x1y1 ∈ E1 · · · (B).

Since a mapg : V2 → V3 defined byg(x2) = x3 for
x2 ∈ V2 is an isomorphism, so

µ2(x2) = µ3(g(x2)) = µ3(x3) for all x2 ∈ V2 · · · (C),
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ν2(x2y2) = ν3(g(x2)g(y2))

= ν3(x3y3) for all x2y2 ∈ E2 · · · (D).

From (A), (C) andf(x1) = x2, x1 ∈ V1, we have

µ1(x1) = µ2(f(x1)) = µ2(x2)

= µ3(g(x2)) = µ3(g(f(x1))), for all x1 ∈ V1,

From (B) and (D), we have

ν1(x1y1) = ν2(f(x1)f(y1)) = ν2(x2y2)

= ν3(g(x2)g(y2))

= ν3(g(f(x1))g(f(y1)))

for all x1y1 ∈ E1.

Therefore,g ◦ f is an isomorphism betweenG1 andG3.
This completes the proof.

Proposition 19. A weak isomorphism (co-isomorphism)
betweenN -graphs is a partial ordering relation.

Proof. The reflexivity and transitivity are obvious. To
prove the anti symmetry, we letf : V1 → V2 be a strong
isomorphism ofG1 ontoG2. Thenf is a bijective map
defined byf(x1) = x2 for all x1 ∈ V1

satisfying

µ1(x1) = µ2(f(x1)) for all x1 ∈ V1,

ν1(x1y1) ≥ ν2(f(x1)f(y1)) for all x1y1 ∈ E1 · · · (E).

Let g : V2 → V1 be a strong isomorphism ofG2 onto
G1. Theng is a bijective map defined byg(x2) = x1 for
all x2 ∈ V2

satisfying

µ2(x2) = µ1(g(x2)) for all x2 ∈ V2,

ν2(x2y2) ≥ ν1(g(x2)g(y2)) for all x2y2 ∈ E2 · · · (F ).

The inequalities (E) and (F) hold on the finite setsV1 and
V2 only whenG1 andG2 have the same number of edges
and the corresponding edges have same weight. Hence
G1 andG2 are identical. Therefore,g ◦ f is a strong
isomorphism betweenG1 andG3. This completes the
proof.

Definition 20. The complement of a weak negative-
valued fuzzy graphG = (µ, ν) ofG∗ = (V,E) is a weak
N -graphG = (µ, ν) onG∗, is defined by

(i)
V = V,

(ii)
µ(x) = µ(x) for all x ∈ V,

(iii)

ν(xy) =

{

0 if ν(xy) > 0,

max(ν(x), ν(y)) if if ν(xy) = 0.

Definition 21. AnN -graphG is called self complemen-
tary if G ≈ G.

The following propositions are obvious.

Proposition 22. Let G be a self complementaryN -
graph. Then

∑

x 6=y

ν(xy) =
1

2

∑

x 6=y

max(µ(x), µ(y)).

Proposition 23. Let G be anN -graph. If ν(xy) =

max(µ(x), µ(y)) for all x, y ∈ V , thenG is self com-
plementary.

Proposition 24. Let G1 and G2 be N -graphs. Then
G1

∼= G2 if and only ifG1
∼= G2.

Proof. Assume thatG1 andG2 are isomorphic, there ex-
ists a bijective mapf : V1 → V2 satisfying

ν1(x) = µ2(f(x)) for all x ∈ V1,

ν1(xy) = µ2(f(x)f(y)) for all xy ∈ E1.

By definition of complement, we have

ν1(xy) = max(µ1(x), µ1(y) = max(µ2(f(x)),

µ2(f(y))) = µ2(f(x)f(y)) for all xy ∈ E1.

HenceG1
∼= G2. The proof of converse part is straight-

forward. This completes the proof.

Proposition 25. LetG1 andG2 beN -graphs. If there is
a strong isomorphism betweenG1 andG2, then there is
a strong isomorphism betweenG1 andG2.

Proof. Let f be a strong isomorphism betweenG1 and
G2, thenf : V1 → V2 is a bijective map that satisfies
f(x1) = x2 for all x1 ∈ V1,

µ1(x1) = µ2(f(x1)) for all x1 ∈ V1,

µ1(x1y1) ≥ µ2(f(x1)f(y1)) for all x1y1 ∈ E1.

Sincef : V1 → V2 is a bijective map,f−1 : V2 → V1 is
also bijective map such thatf−1(x2) = x1 for all x2 ∈
V2. Thus

µ1(f
−1(x2)) = µ2(x2) for all x2 ∈ V2.
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By definition of complement, we have

ν1(x1y1) = max(µ1(x1), µ1(y1)

≥ max(µ2(f(x2)), µ2(f(y2)))

= max(µ2(x2), µ2(y2))

= ν2(x2y2).

Thus,f−1 : V2 → V1 is a bijective map which is a strong
isomorphism betweenG1 andG2. This ends the proof.

The following Proposition is obvious.

Proposition 26. LetG1 andG2 beN -graphs. If there is
a co-strong isomorphism betweenG1 andG2, then there
is a homomorphism betweenG1 andG2.

We now discussN -line graphs.

Definition 27. Let P (S) = (S, T ) be an intersection
graph of a simple graphG∗ = (V,E). LetG = (µ1, ν1)

be anN -graph of G∗. We define anN -intersection
graphP (G) = (µ2, ν2) ofP (S) as follows:

(1) µ2 andν2 areN -functions ofS andT , respectively,

(2) µ2(Si) = µ1(vi),

(3) ν2(SiSj) = ν2(vivj)

for all Si, Sj ∈ S, SiSj ∈ T . That is, anyN -graph of
P (S) is called anN -intersection graph.

The following Proposition is obvious.

Proposition 28. LetG = (µ1, ν1) be anN -graph ofG∗.
Then

• P (G) = (µ2, ν2) is anN -graph ofP (S),

• G ≃ P (G).

This Proposition shows that anyN -graph is isomor-
phic to anN -intersection graph.

Definition 29. LetL(G∗) = (Z,W ) be a line graph of
a simple graphG∗ = (V,E). LetG = (µ1, ν1) be an
N - graph ofG∗. We define anN -line graphL(G) =

(µ2, ν2) ofG as follows:

(4) µ2 and ν2 are N -functions ofZ and W , respec-
tively,

(5) µ2(Sx) = ν1(x) = ν1(uxvx),

(6) ν2(SxSy) = max(ν1(x), ν1(y))

for all Sx, Sy ∈ Z, SxSy ∈ W .

Example 30. Consider a graphG∗ = (V,E) such that
V = {v1, v2, v3, v4} and E = {x1 = v1v2, x2 =

v2v3, x3 = v3v4, x4 = v4v1}. Letµ1 be anN -function
of V and letν1 be anN -functions ofE defined by

v1 v2 v3 v4
µ1 -0.5 -0.4 -0.5 -0.3

x1 x2 x3 x4

ν1 -0.2 -0.3 -0.2 -0.2

G

v2v1

v4 v3

−0.2

−0.2 −0.3

−0.2

−0.5 −0.4

−0.3 −0.5

By routine computations, it is easy to see thatG is an
N -graph.
Consider a line graphL(G∗) = (Z,W ) such that

Z = {Sx1 , Sx2 , Sx3 , Sx4}

and

W = {Sx1Sx2 , Sx2Sx3 , Sx3Sx4 , Sx4Sx1}.

Letµ2 andν2 beN -functions onZ andW , respectively.
Then, by routine computations, we have

µ2(Sx1) = −0.2, µ2(Sx2) = −0.3,

µ2(Sx3) = −0.2, µ2(Sx4) = −0.2.

ν2(Sx1Sx2) = −0.2, ν2(Sx2Sx3) = −0.2,

ν2(Sx3Sx4) = −0.2, ν2(Sx4Sx1) = −0.2.

L(G)

Sx2Sx1

Sx4 Sx3

−0.2

−0.2 −0.2

−0.2

−0.2 −0.3

−0.2 −0.2

7



World Appl. Sci. J., 22 (Special Issue of Applied Math): 1-9,2013

By routine computations, it is clear thatL(G) is anN -
line graph.

The following propositions are obvious.

Proposition 31. L(G) is anN -line graph correspond-
ing toN -graphG.

Proposition 32. If L(G) is anN -line graph ofN -graph
G. ThenL(G∗) is the line graph ofG∗.

Proposition 33. L(G) is anN -line graph of someN -
graphG if and only if

ν2(SxSy) = max(µ2(Sx), µ2(Sy)) for all SxSy ∈ W.

Proof. Assume thatν2(SxSy) = max(µ2(Sx), µ2(Sy))

for all Sx Sy ∈ W . We defineµ1(x) = µ2(Sx) for all
x ∈ E. Then

ν2(SxSy) = max(µ2(Sx), µ2(Sy)) = max(µ1(x), µ1(y)).

An N -function(µ1, ν1) that yields that the property

ν1(xy) ≥ max(µ1(x), µ1(y))

will suffice. The converse part is obvious.

Proposition 34. L(G) is anN -line graph if and only if
L(G∗) is a line graph and

ν2(uv) = max(µ2(u), µ2(v)) for all uv ∈ W.

Proposition 35. LetG1 andG2 beN -graphs. Iff is a
strong isomorphism ofG1 ontoG2, thenf is an isomor-
phism ofG∗

1 ontoG∗
2.

Theorem 36. LetL(G) = (µ2, ν2) be theN -line graph
corresponding toN -graphG = (µ1, ν1). Suppose that
G∗ = (V,E) is connected. Then

(1) there exists a strong isomorphism ofG ontoL(G) if
and only ifG∗ is a cyclic and for allv ∈ V , x ∈ E,
µ1(v) = ν1(x), i.e., µ1 and ν1 are constant func-
tions onV andE, respectively, taking on the same
value.

(2) If f is a strong isomorphism ofG ontoL(G), then
f is an isomorphism.

Proof. Assume thatf is a strong isomorphism ofG
onto L(G). From Proposition 3.31, it follows that
G∗ = (V,E) is a cycle [12, Theorem 8.2, p.72]. Let
V = {v1, v2, · · · , vn} andE = {x1 = v1v2, x2 =
v2v3, · · · , xn = vnv1}, where v1v2v3 · · · vnv1 is a
cyclic. DefineN -functions

µ1(vi) = śi, ν1(vivi+1) = ŕi, i = 1, 2, · · · , n, vn+1 = v1.

Then forśn+1 = ś1,

(a)
{

ŕi ≥ max(śi, śi+1), i = 1, 2, · · · , n.

Now

Z = {Sx1 , Sx1 , Sx2 , · · · , Sxn
}

W = {Sx1Sx2 , Sx2Sx3 , · · · , Sxn
Sx1}.

Also for rn+1 = r1,

µ2(Sxi
) = µ1(xi) = µ

1
(vivi+1) = ŕi,

ν2(Sxi
Sxi+1) = max(ν1(xi), ν1(xi+1))

= max(µ1(vivi+1), ν1(vi+1vi+2))

= max(ŕi, ŕi+1)

for i = 1, 2, · · · , n, vn+1 = v1, vn+2 = v2. Sincef
is an isomorphism ofG∗ ontoL(G∗), f mapsV one-to-
one and ontoZ. Also f preserves adjacency. Hencef
induces a permutationπ of {1, 2, · · · , n} such that

f(vi) = Sxπ(i)
= Sxπ(i)

Sxπ(i+1)

and

xi = vivi+1 → f(vi)f(vi+1) = Svπ(i)
Svπ(i+1)

Svπ(i+2)

, i = 1, 2, · · · , n− 1.

Now

śi = µ1(vi) ≥ µ2(f(vi)) = µ2(Svπ(i)vπ(i+1)
) = ŕπ(i),

ŕi = ν1(vivi+1) ≥ ν2(f(vi)f(vi+1))

= ν2(Svπ(i)
Svπ(i)+1

Svπ(i+1)+1
)

= max(ν1(vπ(i)vπ(i)+1), ν1(vπ(i)+1vπ(i+1)+1))

= max(ŕπ(i), ŕπ(i+1))

for i = 1, 2, · · · , n. That is,

śi ≥ ŕπ(i)

and

(b)
{

ŕi ≥ max(ŕπ(i), ŕπ(i+1)).

By (b), we havéri ≥ ŕπ(i) for i = 1, 2, · · · , n and so
ŕπ(i) ≤ ŕπ(π(i)) for i = 1, 2, · · · , n. Continuing, we
have

ŕi ≥ ŕπ(i) ≥ · · · ≥ ŕπj(i) ≥ ŕi

and sori = rπ(i), ŕi = ŕπ(i) , i = 1, 2, · · · , n, where
πj+1 is the identity map. Again, by (b), we have

ŕi ≥ ŕπ(i+1) = ŕi+1, i = 1, 2, · · · , ŕn+1 = ŕ1.
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Hence by (a) and (b),

ŕ1 = · · · = ŕn = ś1 = · · · = śn.

Thus we have not only proved the conclusion aboutµ1

andν1 being constant function, but we have also shown
that (2) holds. The converse part is obvious.

We state the following Theorem without proof.

Theorem 37. LetG andH beN -graphs ofG∗ andH∗,
respectively, such thatG∗ andH∗ are connected. Let
L(G) andL(H) be theN -line graphs corresponding to
G andH , respectively. Suppose that it is not the case
that one ofG∗ andH∗ is complete graphK3 and other
is bipartite complete graphK1,3. If L(G) andL(H) are
isomorphic, thenG andH are line-isomorphic.
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