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Abstract: In this paper, we introduce the notion 4&f-graphs and describe methods of their construction.
We prove that the isomorphism betwegfigraphs is an equivalence relation (resp. partial ordaticad).
We then introduce the concept.bf-line graphs and discuss some of their fundamental pragserti
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INTRODUCTION to the right nor to the left of some reference object.
In 1975, Rosenfeld [2] discussed the concept of

A (crisp) setA in a universeX can be defined in fuzzy graphs whose basic idea Was'introduced by Kauff-
the form of its characteristic functigns : X — {0,1} mann [3] in 1973. 'The fuzzy relations between fuzzy
yielding the value 1 for elements belonging to the 4et sets were also considered by Rosenfeld and he developed
and the value O for elements excluded from the 4et the structure of fuzzy graphs obtaining analogs of sev-
The most of the generalization of the crisp set have beef"@l graph theoretical concepts. Bhattacharya [4] gave
introduced on the unit intervdd, 1] and they are con- SOMe remarks on fuzzy graphs. Akraal. introduced
sistent with the asymmetry observation. In other wordsn€ concepts of bipolar fuzzy graphs and interval-valued
the generalization of the crisp set to fuzzy sets relied orfuz2y liné graphs [5-9]. In this paper, we introduce the
spreading positive information that fit the crisp pojnj ~ notion of A/-graphs, describe methods of their construc-
into the intervall0, 1]. Because no negative meaning of fion. We prove that the isomorphism betwe®rgraphs
information is suggested, we now feel a need to deal witHS an equivalence relation (resp. partial order relation).
negative information. To do so, we also feel a need to/Ve then introduce the concept.f-line graphs and dis-
supply mathematical tool. To attain such object, @in CUSS Some of their fundamental properties. We have used
al. [1] have introduced a new function which is called Standard definitions and terminologies in this paper. For
negative-valued function (briefly\'-function) to deal qther n.otatlons, terminologies and applications not men-
with negative information that fit the crisp poifit-1} tioned in the paper, the readers are referred to [10-14].

into the interval—1, 0], and constructed/-structures. It PRELIMINARIES

is important to be able to deal with negative information.

It is noted that positive information represents what isRecall that agraphis an ordered paiG* = (V, E),
granted to be possible, while negative information reprewhereV' is the set of vertices ofr* and £ is the set of
sents what is considered to be impossible. As an exanfdges ofs*. Two verticesz andy in an undirected graph
ple, let us consider the spatial relations. Human beingé-" are said to be adjacentd" if {z, y} = zyis anedge
consider “left" and “right" as opposite directions. But 0f G*. A simple graphis an undirected graph that has no
this does not mean that one of them is the negation of th&0ps and no more than one edge between any two dif-
other. The semantics of “opposite” captures a notion oferent vertices. Asubgraphof a graphG* = (V. E) is
symmetry rather than a strict complementation. In partic2 graphH = (W, F), whereW C V andF C E. The
ular, there may be positions which are considered neithegomplementary grap& of a simple graph has the same
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vertices asG*. Two vertices are adjacent iG*
if and only if they are not adjacent iiz*. Con-
sider the Cartesian productG* G x Gj
(V,E) of graphsG; and G5. ThenV Vi x Va
and F {(z,z2)(z,y2)|x1 € WVi,x2y2 € Es}
U{(z1,2)(y1,2)|z € Va,myn € Ei}. Let Gj
(Vi,Eq) and G5 = (Vi, Es) be two simple graphs.
Then, thecompositionof graph G; with G5 is de-
noted byG3[G3] = (V1 x Vo, EY), whereE® = E U
{($1,$2)(y1,y2)|$1y1 € FEi,xo 75 yg} and E is de-
fined in G; x G5. Note thatG;[G3] # G5[G3]. The
union of graphsG7} and Gj is defined asz} U G5 =
(V1 U Vs, E1 U E»). Thejoin of G andG3 is the simple
graphG; + G5 = (V1 UV,, B3 U E5 U E'), whereE! is
the set of all edges joining the nodeslgfandVs. In this
construction it is assumed thet N V5 # (). Anisomor-
phismof the graph&s; andG3 is a bijection between the
vertex sets of5} and G5 such that any two vertices,
andv, of G are adjacent ii7; if and only if f(v;) and
f(ve) are adjacent iri75. If an isomorphism exists be-
tween two graphs, then the graphs are called isomorphi
and we writeG} ~ G5. An automorphisnof a graph
is a graph isomorphism with itself, i.e., a mapping from
the vertices of the given graph* back to vertices of*
such that the resulting gragh* is isomorphic withG*.
By an intersection graphof a graphG* (V, E),
we mean, a pairP(S) (S,T) where S
{51, 52,...,S5,} is a family of distinct nonempty sub-
sets ofV and T = {Sl‘SJ‘|S¢,SJ‘ € S, 5 N Sj #*
0,i # j}. Itis well know that every graph is an in-
tersection graph. By #ne graphof a graphG*
(V,E), we mean, a paiL(G*) = (Z,W) whereZ =
{{z} U{uz, v} |z € E, ug,vy €V, 2 = uyv,} and
W = {5;5,]15: NS, # 0, z,y € E, z # y}, and
Sy = {z} U {ug,v,}, x € E. Itis reported in the lit-

in V andv is an A -function inE C V x V such that

v({z,y}) = max(u(z), u(y))

forall {z,y} € E. We callu theN -vertex function of/,
v the N-edge function ofz, respectively. Note that is
a symmetric\-relation onu. We use the notatiany for
an elemenf{z,y} of E. Thus,G = (p, v) is anN-graph
ofG* = (V, E) if

v(zy) > max(u(x), u(y)) forall xy € E.

Definition 2. Let G = (u,v) be anA-graph. The or-

der of anN-graph is defined b (G) = >~ . u(x).
The degree of a vertex in G is defined byleg(z) =

Z:}cyEE V({Ly) '

Example 3. Consider a graphG* = (V, E) such that
V = {z,y,2}, E = {ay,yz,2x}. Letu be anN-

function ofV and letr be anN-function ofE C V x V

defined by

C X y z Xy yz zZX

uw|-07 -05 -0.7 v|-03 -02 -04
Y z

erature that the line graph is an intersection graph. De-

note by F(X, [—1, 0]) the collection of functions from

a nonempty sek to [—1, 0]. We say that an element of

F(X,[-1,0]) is anegative-valued functiofrom X to

[—1,0] (briefly, N-functionon X). By anA/-structure

we mean an ordered pdiK, ) of X and an\/-function

1 onX. By an/N-relationon X we mean agV-function

v on X x X satisfying the following inequality:
(Vz,y € X)(v(x,y) > max{p(x), u(y)}), (1)

wherep € F(X,[-1,0]). Throughout this papeiG:*

will be a crisp graph, and a \-graph.

N-STRUCTURES APPLIED TO GRAPHS

Definition 1. An A/-graph with an underlying sel’ is
defined to be a pai = (11, ) wherey is anA/-function

(i) By routine computations, it is easy to see that=
(u,v) is anN-graph of G*.

(i) Order of anN-graph=0(G)=-1.9.

(iii) Degree of each vertex i@ is

deg(z)

Definition 4. Let u; and us be A/-functions ofl; and
Vs and letv; and v, be N-functions of E; and Fs,
respectively. The Cartesian product of twb-graphs
G, and Gy of the graphsG; and G is denoted by
G1 X Gy = (u1 x p2,v1 X ve) and is defined as fol-
lows:

—0.7, deg(y) = —0.5, deg(z) = —0.6.

o (u1 X p2)(z1,r2) = max(uq(z1), pa(x2)) for all
(x1,22) €V,
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o (11 x12)((z,22)(7,y2)) = max(u1(z), va(r2y2))
forall z € V4, for all zoys € Fo,

o (11 x v)((x1,2)(y1,2)) = max(vi(z191), p2(2))
forall z € Vo, forall z1y1 € Es.

Definition 5. Let G; and G2 be twoN- graphs. The
degree of a vertex iif; x G5 can be defined as follows:
for any(xy1,z2) € Vi x Vo,

(z1,22)(y1,y2)EE

>

T1=y1=2,22y2€ L2

+m >

s=ya=z,21y1€E1

dG1XG2(x1ax2) =

Example 6. LetG; = (V1, E1) and G5 = (V2, E») be
two graphs, wherd; = {z1,y1} andVa = {z2,y2}
are underlying sets. Let; and o be A/-functions ofi;
andV;, and lety; andv, be NV -functions ofE; and E»,
respectively. We defing : Vi — [-1,0], uz : Vo —
[—1,0], v B — [—1,0] andvy : By — [—1,0] by

pi(z1) = —0.2, pui(y1) = —0.3,
pa2(x2) = —0.35, po(y2) = —0.4,

vi(z1y1) = —0.1, va(zay2) = —0.2.

(i) Itiseasytoseethaf; = (u1,v1) andGs = (2, v2)
are N'-graphs ofG} and G, respectively. Routine com-
putations give

(11 % p2) (w1, 22) =
)

(1 % p2)(y1, x2) = —

)
(1/1 X Vg ],‘1,],‘2)(:(]1,],‘2)) = —0.1,
(1 x va)((y1, 22) (1, 92)) = =0.2,
(1 x o) ((x1,92)(y1,92)) = —0.1.

—0.2

Y1
G1

Y2
Gs

(v1 X v2) (@1, 22)(Y1,y2)

max(p (), va(z2y2))

(yla y2)

(y1,72)

max(p2(2), Vl(xlylgl,early, G1 x Gy is anN- graph of G; x G3.

(i) Routine computations give degree of each vertex in
Gy x Gy as

da,xa, (21, 22) = —0.3, da, xa, (21,y2) = —0.3,

dGl x G2 (y1,ar2) =—0.3, dGl x G2 (ylva) =-0.3.

Definition 7. Let u; and u» be A/-functions ofl; and
V5 and letr; and v, be M -functions ofE; and Es, re-
spectively. The composition of twé-graphsG; and
G- of the graphsG; and G; is denoted byG;[G2] =
(11 o pe, v1 o 19) and is defined as follows:

® (po Mz)(ffh@) = max(u1(21), p2(w2)) for all
(xl’xQ)
(

vi o ve)((w, x2)(x,y2)) = max(u1(w), va2(r2y2))
forall z € Vi, for all zoys € Fs,

o (v10owv2)((z1,2)(y1,2)) = max(v1(z1y1), p2(2))
forall z € Vo, for all z1y; € E1.

o (v1ov2)((z1,22)(y1, y2))=max(ua(w2), p2(y2), v1(z191))
forall z € Vs, forall (z1,z2)(y1,v2) € E° — E.

Note thatu; o us
onFk.

=1 X e onVanduyovy = vy X 1y

Definition 8. Let G; and G> be twoA-graphs. The
degree of a vertex i1 [G2] can be defined as follows:
for any(xy1,z2) € V1 x Vs,

>

(z1,22)(y1,92)€EE

>

T1=Y1=2,22y2€F2

+ 2

T2=y2=2,21y1€E1

LD

z2#Y2,21y1€E1

dg, (e (21, 22) = (v1 0va) (@1, 22)(y1, y2)
max(p1 (), va(z2y2))

max(p2(2), vi(z1y1))

max(pe(z2), v1(z191)).
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Example 9. LetG; = (V4, E1) andG; = (V,, E») be  Clearly, G1[G2] is anN- graph of G5 [G3).

two graphs, wherd; = {z1,y1} andVa = {z2,y2} (i) Routine computations give degree of each vertex in
be underlying sets. Let; and us be N-functions ofl; G1[Gs] as

andV;, and lety; andv, be NV -functions ofE; and E»,

respectively. We define, : Vi — [—1,0], p2 : Vo — dg,(G.) (21, 72) = —0.5, dg,[G,) (71, y2) = —0.5,
[—1,0], v B — [—1,0] andvy : By — [—1,0] by

z1) = —0.2, = —0.3, e .
) Ha(3) Definition 10. Letu; andus be N-functions ofl; and
pa(z2) = —0.35, pa(y2) = —0.4, V, and lety; and v, be N-functions ofE; and Es, re-
spectively. Then union of twd'-graphsG; and G5 of

th hg73 andG? is denoted b = ,
(i) Itis easy to see that; = (u1,v1) andGa = (2, v2) egrap SGl. an GQ s denote _ﬁlUGQ (U
. . 11 Uwp) and is defined as follows:
are N'-graphs ofG% and G, respectively. Routine com-

ey (Y1, 72) = =0.5, dayjay) (Y1, ¥2) = —0.5.

vi(z1y1) = —0.35, vo(z2,y2) = —0.5.

putations give (A) (1 Up)(x) = pa(x) if x € VNV,
_ _ (1 U p2)(z) = po(z) if z € Von Vi,
(k10 pa)(wr,22) = =02, (i 0 pa)(w1,92) = ~0.2, (1 U pia) () = max(s (2), pia()) if 2 € Vi N V.
) = _03a ; = _03, ) __
o)l 2) =203 i @ p)lun, ) ®) (1 Ure)(ey) = (o) oy € B0 By
(w1 owp)((21, w2)(21,92)) = 0.2, (11 Un)(zy) = vo(ay) if xy € Eo N EY,
(v1 0 vo)((x1,22)(y1, 22)) = —0.1, (v1Urg)(zy) = max (v (zy), va(zy)) if zy € E1N
(71 0 2) (31, 72) (1, 92)) = —0.2, P2
(v1 ova)((z1,y2)(y1,2)) = —0.1. Definition 11. Let G; and G, be twoN-graphs. The
(11 0v9) (@1, ) (g1, 42)) = —0.2 degree of a vertex it'; U G2 can be defined as follows:
(1 0 v2) (1, 22) (21, 2)) = —0.2.
- . Case 1. When € V; or x € V, but not in both.
1 2

If z € Vi, thende,ue, (2) = 3, ep, v1(2Y),

G e If z € Va, thende,ue, (2) = 3, cp, v2(2Y).

Case 2: When: € Vi NV, but no edge incident at lies in
E1 N Es.
deyue, (v) = dg, (x) + da, (2).

Case 3: When € V1 UV, and some edges incidentaties

a e in E1 n EQ.
dG1UG2(x) = dGl(J)) + dGz(x)- EwyeElﬁEQ

i Y2 max (v1(zy), va(zy).

Gy Go Example 12. Let G} = (V4, Eq) and G5 = (Va, E»)
be two graphs, wherd; = {a,b,c,d,e} and V, =
{a,b,c,d, f} be underlying sets. Let; and us be N'-
functions ofl; andV;, and lety; andv, be N-functions
of £y and s, respectively. We defing : V; — [—1,0],
Ko : Vo — [—1,0], v B — [—1,0] anduvsy : By —
[_17 O] by

(z1,72) (z1,92)

:ul(a‘) = _025 ,ul(b) = _015

pi(c) = =03, pa(d) = =0.3, pa(e) = —0.4,
pz(a) = =0.1, pa(b) = —0.2, p2(c) = —0.3,
(Y1, 22) (y1,92) pa(d) = —0.5, o (f) = —0.4,

Ch[G] vi(ab) = —0.1, v1(bc) = —0.1, vi(ce) = —0.2,




World Appl. Sci. J., 22 (Special Issue of Applied Math): 2@®13

vi(be) = —0.1, vi(ad) = —0.1, vi(de) = —0.2,
va(ab) = —0.1, va(be) = —0.1,
va(ef) = —0.2, vp(bd) = —0.2, v (bf) = —0.1.
It is easy to see that; = (u1,v1) and Gy = (usg, va)

are N'-graphs ofG% and G, respectively. Routine com-

putations give

(11U p2)(a) = 0.1, (u1 U p2)(b) = —0.1,

(11U p2)(c) = 0.3, (p1 U p2)(d) = —0.3,
(11U p2)(e) = =04, (u1 U p2)(f) = —04,
(r1 Uwg)(ab) = —0.1, (v1 Ura)(be) = —0.1,
(r1 Uwg)(ce) = —0.2, (v Uws)(be) = —0.1,
(r1 Ug)(ad) = —0.1, (v1 Uws)(de) = —0.2,

(11 Ug)(bd) = —0.2, (11 Urg)(de) = —0.1.
Clearly, (u1Ups, v1Urs) is anN- graph of G UG

Definition 13. Letx; andus be A-functions ofl; and
V3 and lety; andv, be N-functions ofF; and E», re-
spectively. Then join of tw&-graphsG; and G- of the
graphsG; and G5 is denoted by, + G = (u1 + po,
11 + 1) and is defined as follows:

o (p1+p2)(x) = (1 Up2)(z)ifz e ViUV,

o (1 +v2)(zy) = (1 Uwe)(zy) = vi(ay) if zy €
Fi1 U E,,

o (1 +v2)(y) = max(un (@), pa(y)) if oy € B,

Proposition 14. If G; and G» are the A/ -graphs, then
G1 x Ga , G1]|Gs], G1 UG andG, + G are N-graphs.

We formulate the following characterizations.

Proposition 15. LetG; = (p1,v1) andGae = (e, v2)
be N -graphs of the graph&s andG% and letV; NV, =
(. Then unionG; U Gy = (p1 U ug,v1 U 1) is
an N-graph of G* if and only if Gy = (u1,v1) and
G2 = (u2,v2) are N-graphs of the graph&; and G35,
respectively.

Proof. Suppose that’; U G5 is anN-graph. Letry €
E,. Thenzy ¢ E; andz, y € V3 — Va. Thus

vi(zy) = (1 Nve)(zy)
max((p1 N p2) (), (k1 N p2)(y))
= max(ui(x), pu1(y))-

v

This shows that?; = (11, v1) is anA/-graph. Sim-
ilarly, we can show tha€y = (u2,v2) is anN-graph.
The converse part is obvious. O

As a consequence of above propositions, we obtain

Proposition 16. LetG1 = (u1,v1) andGa = (ueo, v2)
be N -graphs of the graph&* andG% and letV; NV, =
¢ . ThenjoinGy+Gs = (1 +p2, v1+ve) isanN-graph
of G* if and only ifG1 = (u1,v1) and Gy = (ua,v2)
are N'-graphs of the graph&'; and G5, respectively.

We now discuss isomorphism af-graphs.

Definition 17. LetG1 = (u1,v1) andGy = (us2, v2) be
N-graphs. Ahomomorphisgh: G; — G2 is a mapping
f: V1 — Vo such that

() pa(z1) > p2(f(z1)),
(i) vi(wrys) > va(f(z1)f(y1))

forall x; € Vi, x1y1 € E;. A bijective homomorphism
with the property

(i) p1(21) = pa(f(z1))

is called a strong isomorphism. A strong isomorphism
preserves the weights of the nodes but not necessarily the
weights of the arcs. A bijective homomorphism preserv-
ing the weights of the arcs but not necessarily the weights
of nodes, i.e., a bijective homomorphigm G; — G

such that

(V) vi(ziy1) = va(f(z1)f(y1))

for all 1y, € Vi is called a strong co-isomorphism. A
bijective mapping’ : G; — G» satisfying(iii) and (iv)
is called an isomorphism.

Proposition 18. An isomorphism betweek’-graphs is
an equivalence relation.

Proof. The reflexivity and symmetry are obvious. To
prove the transitivity, we letf : V3 — V5 andg :
Vo — V3 be the isomorphisms af, onto G, and G2
ontoGj, respectively. Theg o f : V7 — V3 is a bijec-
tive map fromV; to Vs, where(g o f)(z1) = g(f(z1))
forall z; € V4. Since a magy : Vi — V5 defined by
f(z1) = xo for 1 € V7 is an isomorphism, so we have

pa(x1) = pa(f(z1)) = po(w2) forallzy € Vi -+ (A),
vi(ziyr) = wve(f(z1)f(y1))
= wo(xays) forallziy; € Ev ---(B).

Since a magy : Vo — V3 defined byg(z2) = x5 for
xo € V4 is an isomorphism, so

p2(x2) = pa(g(z2)) = ps(xs) forallas € Vo ---(O),
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va(2y2) = w3(g(2)g(y2)) (iii)
= wvs(x3ys) forall zoys € Ey --- (D). _
(ay) = if v(zy) >0,
From (A), (C) andf (1) = 22, 21 € Vi, we have Y max(v(z), v(y)) i if v(zy) = 0.

p(x1) = p2(f(21)) = p2(22) Definition 21. AnA/-graph( is called self complemen-
= pa(g(x2)) = ps(g(f(x1))), forallzs € Vi, taryif G ~ .

From (B) and (D), we have The following propositions are obvious.
vi(riy1) = va(f(x1)f(y1)) = va(z2y2)  Proposition 22. Let G be a self complementary/'-
= w3(g(z2)9(y2)) graph. Then
= vs(g(f(z1))g(f(y1))) 1
for all #1y, € . ; v(zy) = 5 ; max(p(2), 1(y))-
THY THY

Thereforeg o f is an isomorphism betwee#; andGs.

This completes the proof. Proposition 23. Let G be anN-graph. If v(zy) =

max(p(x), u(y)) for all z, y € V, thenG is self com-
Proposition 19. A weak isomorphism (co-isomorphism) plementary.

betweenV-graphs is a partial ordering relation. .
Proposition 24. Let G; and G5 be N-graphs. Then

Proof. The reflexivity and transitivity are obvious. To G = G, if and only ifG; = Gb.
prove the anti symmetry, we Igt: V; — V; be a strong . ]
isomorphism ofG; ontoGs. Thenf is a bijective map ~ Proof. Assume thaty; andG:, are isomorphic, there ex-
defined byf(z1) = 2, forall z; € V4 ists a bijective mayf : V1 — V5 satisfying
satisfyin

fving vi(x) = po(f(x)) forallz e V7,

= for all Wi,
p1(z1) = po(f(z1)) forallzy € V3 v1(zy) = pa(f(x) f(y)) forallzy € E;.

vi@iyn) 2 va(f(21)f(y1)) forallewys € By - (E). By definition of complement, we have

Letg : Vo — Vj be a strong isomorphism @f, onto

G1. Theng is a bijective map defined hy(x2) = = for 71 (xy) = max(p1 (), p1 (y) = max(pa(f(x)),

all zo € V4

satisfying r2(f(y))) = 1a(f (@) f(y)) forallay € Ey.
HenceG,; = G. The proof of converse part is straight-

To) = T for all x5 € V5,
Ha(w2) = pn(g(w2)) 2 ? forward. This completes the proof. O

va(w2y2) = v1(g(22)g(y2)) forallzoys € Ep ---(F). y .

. N o Proposition 25. LetG; andG; be A/-graphs. If there is
The inequalities (E) and (F) hold on the finite sefsand 5 strong isomorphism betweéh andGo, then there is
V2 only whenG; andG» have the same number of edges 4 strong isomorphism betwe&h andGo.

and the corresponding edges have same weight. Hence
G, and G2 are identical. Thereforg; o f is a strong Proof. Let f be a strong isomorphism betweéh and
isomorphism betweefi’; and Gs. This completes the Gs, thenf : V; — V5 is a bijective map that satisfies

proof. O f(z1) = zo forall z; € V4,
Definition 20. The complement of a weak negative- p1(z1) = po(f(z1)) forallay € Vi,
valued fuzzy grapt = (u, v) of G* = (V, E) is a weak
N-graphG = (i, 7) onG*, is defined by i (z1y1) > pa(f (1) f(y1)) for all 21y € Ex.
0] - Sincef : Vi — V4 is a bijective mapf~! : Vo, — Vi is
V=V, also bijective map such thgt ! (zy) = = forall z, €
. V5. Thus
(ii)
,LL(J?) = /,L(J?) forall x € V, Ml(f_l(a:Q)) = ﬂ?(xQ) for all z9 € V5.
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By definition of complement, we have

vi(ziy) = max(pul(z1), pa(y1)
max(p2(f(z2)), p2(f(y2)))

= max(u2(22), p2(y2))
)-

= V2(»”C2y2

Y

Thus,f~! : Vo, — V; is a bijective map which is a strong
isomorphism betwee@'; andG,. This ends the proof.
O

The following Proposition is obvious.

Proposition 26. LetG; andG» be A/-graphs. If there is
a co-strong isomorphism betweéfi and G-, then there
is a homomorphism betweéh andG-.

We now discussV-line graphs.

Definition 27. Let P(S) = (S,T) be an intersection
graph of a simple grapi?* = (V, E). LetG = (u1,v1)
be anN-graph of G*. We define anV-intersection
graph P(G) = (p2, v2) of P(S) as follows:

(1) uo andv, are N-functions ofS andT’, respectively,
(2) p2(Si) = pa(vi),
(3) 12(8:S;) = va(viv;)

forall S;,S; € S,5;S; € T. That is, anyN-graph of
P(S) is called anV -intersection graph.

The following Proposition is obvious.

Proposition 28. LetG = (i1, v1) be an\-graph ofG*.
Then

e P(G) = (u2,v2) is anN-graph of P(S),
e G~ P(G).

This Proposition shows that anyy-graph is isomor-
phic to an\-intersection graph.

Definition 29. Let L(G*) = (Z, W) be a line graph of
a simple graphG* = (V, E). LetG = (u1,v1) be an
N- graph of G*. We define anV-line graph L(G) =

(2, v2) of G as follows:

(4) p2 and v, are A-functions ofZ and W, respec-
tively,

(5) p2(Sz) = vi(z) = vi(uzvs),
(6) v2(S5:5y) = max(v1(2),11(y))
forall S, Sy, € Z, 5,5, € W.

Example 30. Consider a graphG* = (V, E) such that
V = {’Ul,’Ug,’Ug,’U4} and £ = {xl = V1V2, L9 =

VU3, T3 = U3V4, T4 = 1)4’01}. Letul be an/N/ -function

of V and lety; be anN-functions ofE defined by

U1

V2 V3 V4

Z1

]

T3

T4

M1

-0.5

-04 -05 -0.3 2

-0.2

-0.3

-0.2

-0.2

By routine computations, it is easy to see tldais an

N-graph.

Consider a line graptL(G*) = (Z, W) such that

and

Let u» andvs be A-functions onZ and W, respectively.
Then, by routine computations, we have

W: {SI15$27 SZEQSI37 S{E35I47 S{E4SZE1}'

U1 V2

V4 U3

Z - {Sw175$27 Swm Sﬂv4}
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By routine computations, it is clear th@f(G) is an /-
line graph.

The following propositions are obvious.

Proposition 31. L(G) is an N-line graph correspond-
ing to V-graphG.

Proposition 32. If L(G) is anN-line graph ofA/-graph
G. ThenL(G*) is the line graph of*.

Proposition 33. L(G) is an N-line graph of some\V/-
graphG if and only if

v2(S52Sy) = max(ua(Sy), u2(Sy)) for all ScS, € W.

Proof. Assume that(S;S,) = max(u2(Sz), p2(Sy))
forall S, S, € W. We defineu(z) = p2(S,) for all
r € E. Then

vo(S2Sy) = max(p2(Sy), p2(Sy)) = max(p1 (z), p1(y)).
An N-function (11, v1) that yields that the property

vi(zy) > max(u1 (), p1(y))

will suffice. The converse part is obvious. O

Proposition 34. L(G) is an/-line graph if and only if
L(G*) is aline graph and

vo(uv) = max(ua(u), pa(v)) foralluv € W.

Proposition 35. Let G; and G> be A/-graphs. Iff is a
strong isomorphism af/; ontoG-, thenf is an isomor-
phism ofG7 ontoG3.

Theorem 36. Let L(G) = (u2, v2) be theN-line graph
corresponding toV-graphG = (u1,v1). Suppose that
G* = (V, E) is connected. Then

(1) there exists a strong isomorphism@bnto L(G) if
and only ifG* isa cyclicand foral € V, x € E,
u1(v) = vi(x), i.e., u; andr, are constant func-
tions onV and E, respectively, taking on the same
value.

(2) If f is a strong isomorphism & onto L(G), then
f is anisomorphism.

Proof. Assume thatf is a strong isomorphism ofs
onto L(G). From Proposition 3.31, it follows that
G* = (V,E) is a cycle [12, Theorem 8.2, p.72]. Let
V = {v,v9, -+ ,v,} and E = {z1 = vjvg, 22 =
VU3, Ty = U1}, Wherewjvous---vpvr is a
cyclic. DefineN-functions

,ul(vi) = 5/7;, V1(’U¢U¢+1) = ’I%,ZI = 1,2, o, Ny Up41 = V1.

Then fors, 41 = $1,

(@) { 7 > max(§;,8i41),i=1,2,--- ,n.
Now
Z ={S8z,,5%,+Sz2, " 152, }
W = {54,525+ Sz2Swss "+ » Sz, Sz, }-

Also forr,,+1 = 1,

12(Sz,) = pa(xi) = py (Vivigr) = 74,
= max(vi(x;),v1(Ti41))
max (1 (v;vir1), V1 (Vir10i12))

maX(’I% y 741'4_1)

V2(5$i5$i+1)

fori = 1,2,--- ,n, vp11 = v1, Unaio = v2. Sincef
is an isomorphism ofs* onto L(G*), f mapsV one-to-
one and ontdZ. Also f preserves adjacency. Henge

induces a permutationof {1,2,--- ,n} such that
fu) = Swﬂ(i,) = Smﬂ(i) Sfr,r(i+1)
and
x; = vivip1 — f(vi) f(vig1) Sy St i1y Svniisa)
. i=1,2,---,n—1.

Now

$i = p1(vi) > pa(f(vi)) = p2(Sv, yveian) = Tr(i)s

Y

va(f(vi) f(vig1))
V2 (S, (i) Sy 1S
max(v1 (Va(s)Vr(i)+1)> Y1 (Vx (i) 41V (i+1)+1))

max (7' iy, Fr(i+1))

7 =1 (Uﬂ/v;+1)

Uw(i+1)+1)

fori =1,2,--- ,n. Thatis,

$; > 1 (4)

and
(b) { 7 > max(Fri), Fr(it1))-
By (b), we have’; > 7. fori = 1,2,--- ,n and so
(i) < Friry fori = 1,2,---,n. Continuing, we
have
Ti 2 Tr() 20 2 Trie) 2 Ti
and sor; = Tr(i)s 7 = 7/'71'(7;) = 1,2, . n, where

711 is the identity map. Again, by (b), we have

Ti 2 Trigp1) = Fit1,0 = 1,2, Fpqq = 71



Thus we have not only proved the conclusion about
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Hence by (a) and (b),

Fl=-=F, =84 ==&,

andv; being constant function, but we have also shown
that (2) holds. The converse part is obvious. O

12. Sunitha, M. S. and K. Sameena, 2008. Characteri-

zation of g-self centered fuzzy graphs, The Journal
of Fuzzy Mathematics, 16: 787-791.

13. Zadeh, L.A. 1965. Fuzzy sets, Information and

Control, 8:338-353.

14. Zadeh, L.A. 1971. Similarity relations and fuzzy

We state the following Theorem without proof.

Theorem 37. LetG and H be N'-graphs ofG* and H*,
respectively, such that™* and H* are connected. Let
L(G) and L(H) be theN-line graphs corresponding to
G and H, respectively. Suppose that it is not the case
that one ofG* and H x is complete grapli; and other

is bipartite complete grapi; 5. If L(G) andL(H) are
isomorphic, therG and H are line-isomorphic.

10.

11.

. Jun, Y.B,,

. Rosenfeld, A. 1975.
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